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Nonregular Languages

It turns out that many languages cannot be recognized by DFAs.
For example,

L = {w | w has an equal number of a’s and b’s}

is not regular.
How can we prove that?
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The Pumping Lemma (for Regular Languages)

Theorem (The Pumping Lemma)
If L is an infinite regular language, then there exists a positive integer
m such that, for every string w ∈ L of length at least m, w can be
decomposed as w = xyz such that

|xy | ≤ m,
|y | ≥ 1,
For every i ≥ 0, xy iz ∈ L,

We will call m the pumping length of the language.
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The Pumping Lemma

Proof, beginning.
Let L be a regular language.
Let M be a DFA that recognizes L.
Choose M to be the number of states in M.
Let w ∈ L be a string of length ` ≥ m.
When M processes w , it begins in state q0 and proceeds to a new
state for each symbol in w .
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The Pumping Lemma

Proof, continued.
Label the visited states s0, s1, s2, . . . , s`, where s0 = q0.
This list contains ` + 1 > m states.
Therefore, one state must be repeated.
Let sj be the first state repeated and let sk be the first repetition of
sj . That is, sj = sk and k > j .
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The Pumping Lemma

Proof, continued.
Let x be the string of symbols processed in getting from s0 to sj ,
Let y be the string processed in getting from sj to sk , and
Let z be the string processed in getting from sk to s`.
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The Pumping Lemma

Proof, concluded.
Then, clearly,

s = xyz,
|xy | ≤ m.
|y | ≥ 1,

It follows that xy iz ∈ L for any i ≥ 0 because we can follow the
loop from sj back to sj (i.e., sk ) as many times as we like, including
not at all.
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Examples

Example (Nonregular languages)
Show that the language L = {anbn | n ≥ 0} is nonregular.
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Examples

Example (Nonregular languages)
Let L = {anbn | n ≥ 0} and suppose that L is regular. (Your choice
of L)

Let m be the “pumping length” of L. (Your worst enemy’s choice of
m)
Let w = ambm ∈ L. (Your choice of w)
Then w = xyz where |y | ≥ 1 and |xy | < m. (Your worst enemy’s
choice of x , y , and z)
It follows that y = ak for some k > 0. (Your choice of k )
According to the Pumping Lemma, xy2z = am+kbm ∈ L, which is a
contradiction.
Therefore, L is not regular.
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Examples

Example (Nonregular languages)
Show that the following languages are nonregular.

{wwR | w ∈ Σ∗}.
{w | w has an equal number of a’s and b’s}.
{w | w has an unequal number of a’s and b’s}.
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Examples

Example (Nonregular languages)
Show that the language L of all correct multiplication problems is
non-regular.

For example, the problem
00101
00110
11110

would be represented by 0
0
1

 0
0
1

 1
1
1

 0
1
1

 1
0
0

 .

Consider the multiplication

(2n − 1)× (2n − 1) = 2n(2n − 1)− 2n + 1

for n ≥ 1.
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Collected

To be collected on Fri, Sep 30:
Section 3.1 Exercises 21b, 22.
Section 3.2 Exercises 15a.
Section 3.3 Exercises 11, 12.
Section 4.1 Exercises 1a, 16 (give proof).
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Assignment

Assignment
Section 4.3 Exercises 1, 3, 4, 5bdef, 8, 18aef, 19, 20, 24, 26.
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