Nonregular Languages
 Lecture 15
 Section 4.3

Robb T. Koether
Hampden-Sydney College

Wed, Sep 28, 2016

Outline

(1) Nonregular Languages
(2) The Pumping Lemma
(3) Examples

4 Assignment

Outline

(9) Nonregular Languages

(2) The Pumping Lemma

(3) Examples
(4) Assignment

Nonregular Languages

- It turns out that many languages cannot be recognized by DFAs.
- For example,

$$
L=\{w \mid w \text { has an equal number of a's and b's }\}
$$

is not regular.

- How can we prove that?

Outline

(1) Nonregular Languages

(2) The Pumping Lemma

(3) Examples
4) Assignment

The Pumping Lemma (for Regular Languages)

Theorem (The Pumping Lemma)

If L is an infinite regular language, then there exists a positive integer m such that, for every string $w \in L$ of length at least m, w can be decomposed as $w=x y z$ such that

- $|x y| \leq m$,
- $|y| \geq 1$,
- For every $i \geq 0, x y^{i} z \in L$,
- We will call m the pumping length of the language.

The Pumping Lemma (for Regular Languages)

Theorem (The Pumping Lemma)

For every regular language L, there exists a positive integer m such that, for every string $w \in L$ of length at least m,there exist strings x, y, and z such that

- $|x y| \leq m$,
- $|y| \geq 1$,
- For every $i \geq 0, x y^{i} z \in L$,

The Pumping Lemma (for Regular Languages)

Theorem (The Pumping Lemma)

For every regular language L, there exists a positive integer m such that, for every string $w \in L$ of length at least m, there exist strings x, y, and z such that $w=x y z$ and

- $|x y| \leq m$,
- $|y| \geq 1$,
- For every $i \geq 0, x y^{i} z \in L$,

The Pumping Lemma

Proof, beginning.

- Let L be a regular language.
- Let M be a DFA that recognizes L.
- Choose M to be the number of states in M.
- Let $w \in L$ be a string of length $\ell \geq m$.
- When M processes w, it begins in state q_{0} and proceeds to a new state for each symbol in w.

The Pumping Lemma

Proof, continued.

- Label the visited states $s_{0}, s_{1}, s_{2}, \ldots, s_{\ell}$, where $s_{0}=q_{0}$.
- This list contains $\ell+1>m$ states.
- Therefore, one state must be repeated.
- Let s_{j} be the first state repeated and let s_{k} be the first repetition of s_{j}. That is, $s_{j}=s_{k}$ and $k>j$.

The Pumping Lemma

Proof, continued.

- Let x be the string of symbols processed in getting from s_{0} to s_{j},
- Let y be the string processed in getting from s_{j} to s_{k}, and
- Let z be the string processed in getting from s_{k} to s_{ℓ}.

The Pumping Lemma

Proof, concluded.

- Then, clearly,
- $s=x y z$,
- $|x y| \leq m$.
- $|y| \geq 1$,
- It follows that $x y^{i} z \in L$ for any $i \geq 0$ because we can follow the loop from s_{j} back to s_{j} (i.e., s_{k}) as many times as we like, including not at all.

Outline

(1) Nonregular Languages

2 The Pumping Lemma
(3) Examples
(4) Assignment

Examples

Example (Nonregular languages)

- Show that the language $L=\left\{\mathbf{a}^{n} \mathbf{b}^{n} \mid n \geq 0\right\}$ is nonregular.

The Pumping Lemma (for Regular Languages)

Theorem (The Pumping Lemma)

For every regular language L, there exists a positive integer m such that, for every string $w \in L$ of length at least m, there exist strings x, y, and z such that $w=x y z$ and

- $|x y| \leq m$,
- $|y| \geq 1$,
- For every $i \geq 0, x y^{i} z \in L$,

Examples

Example (Nonregular languages)

- Let $L=\left\{\mathbf{a}^{n} \mathbf{b}^{n} \mid n \geq 0\right\}$ and suppose that L is regular. (Your choice of L)

Examples

Example (Nonregular languages)

- Let $L=\left\{\mathbf{a}^{n} \mathbf{b}^{n} \mid n \geq 0\right\}$ and suppose that L is regular. (Your choice of L)
- Let m be the "pumping length" of L. (Your worst enemy's choice of m)

Examples

Example (Nonregular languages)

- Let $L=\left\{\mathbf{a}^{n} \mathbf{b}^{n} \mid n \geq 0\right\}$ and suppose that L is regular. (Your choice of L)
- Let m be the "pumping length" of L. (Your worst enemy's choice of m)
- Let $w=\mathbf{a}^{m} \mathbf{b}^{m} \in L$. (Your choice of w)

Examples

Example (Nonregular languages)

- Let $L=\left\{\mathbf{a}^{n} \mathbf{b}^{n} \mid n \geq 0\right\}$ and suppose that L is regular. (Your choice of L)
- Let m be the "pumping length" of L. (Your worst enemy's choice of m)
- Let $w=\mathbf{a}^{m} \mathbf{b}^{m} \in L$. (Your choice of w)
- Then $w=x y z$ where $|y| \geq 1$ and $|x y|<m$. (Your worst enemy's choice of x, y, and z)

Examples

Example (Nonregular languages)

- Let $L=\left\{\mathbf{a}^{n} \mathbf{b}^{n} \mid n \geq 0\right\}$ and suppose that L is regular. (Your choice of L)
- Let m be the "pumping length" of L. (Your worst enemy's choice of m)
- Let $w=\mathbf{a}^{m} \mathbf{b}^{m} \in L$. (Your choice of w)
- Then $w=x y z$ where $|y| \geq 1$ and $|x y|<m$. (Your worst enemy's choice of x, y, and z)
- It follows that $y=\mathbf{a}^{k}$ for some $k>0$. (Your choice of k)

Examples

Example (Nonregular languages)

- Let $L=\left\{\mathbf{a}^{n} \mathbf{b}^{n} \mid n \geq 0\right\}$ and suppose that L is regular. (Your choice of L)
- Let m be the "pumping length" of L. (Your worst enemy's choice of m)
- Let $w=\mathbf{a}^{m} \mathbf{b}^{m} \in L$. (Your choice of w)
- Then $w=x y z$ where $|y| \geq 1$ and $|x y|<m$. (Your worst enemy's choice of x, y, and z)
- It follows that $y=\mathbf{a}^{k}$ for some $k>0$. (Your choice of k)
- According to the Pumping Lemma, $x y^{2} z=\mathbf{a}^{m+k} \mathbf{b}^{m} \in L$, which is a contradiction.

Examples

Example (Nonregular languages)

- Let $L=\left\{\mathbf{a}^{n} \mathbf{b}^{n} \mid n \geq 0\right\}$ and suppose that L is regular. (Your choice of L)
- Let m be the "pumping length" of L. (Your worst enemy's choice of m)
- Let $w=\mathbf{a}^{m} \mathbf{b}^{m} \in L$. (Your choice of w)
- Then $w=x y z$ where $|y| \geq 1$ and $|x y|<m$. (Your worst enemy's choice of x, y, and z)
- It follows that $y=\mathbf{a}^{k}$ for some $k>0$. (Your choice of k)
- According to the Pumping Lemma, $x y^{2} z=\mathbf{a}^{m+k} \mathbf{b}^{m} \in L$, which is a contradiction.
- Therefore, L is not regular.

Examples

Example (Nonregular languages)

- Show that the following languages are nonregular.
- $\left\{w w^{R} \mid w \in \Sigma^{*}\right\}$.
- $\{w \mid w$ has an equal number of a's and b's $\}$.
- $\{w \mid w$ has an unequal number of \mathbf{a} 's and \mathbf{b} 's $\}$.

Examples

Example (Nonregular languages)

- Show that the language L of all correct multiplication problems is non-regular.

$$
00101
$$

- For example, the problem $\frac{00110}{11110}$ would be represented by

$$
\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

- Consider the multiplication

$$
\left(2^{n}-1\right) \times\left(2^{n}-1\right)=2^{n}\left(2^{n}-1\right)-2^{n}+1
$$

for $n \geq 1$.

Collected

To be collected on Fri, Sep 30:

- Section 3.1 Exercises 21b, 22.
- Section 3.2 Exercises 15a.
- Section 3.3 Exercises 11, 12.
- Section 4.1 Exercises 1a, 16 (give proof).

Outline

(1) Nonregular Languages
(2) The Pumping Lemma
(3) Examples
(4) Assignment

Assignment

Assignment

- Section 4.3 Exercises 1, 3, 4, 5bdef, 8, 18aef, 19, 20, 24, 26.

